WE-G-BRB-06: Real-Time Radiation Field Tracking Using Long Scintillating Fibers.
نویسندگان
چکیده
PURPOSE To ensure the quality assurance of small field, dynamic radiotherapy, we present and validate a radiation tracking system based on long scintillating fibers that allows for the real-time measurement of the position and energetic fluence of a small incident radiation field. METHOD We aligned 60 parallel scintillating fibers on a thin grooved acrylic slab with a 100-cm source-to-fibers distance. Both ends of each scintillating fiber were coupled to clear optical fibers to enable light collection by a single CCD camera using an f/0.95, 50 mm focal length lens. Using a small, static photon radiation field of 2×2 cm2 of a Varian Clinac iX, we changed the interaction position on the prototype using the linac treatment couch. The interaction position parallel and perpendicular to the scintillating fiber array were deduced using the optical attenuation of the scintillating fibers. The energetic fluence of the incident field was calculated from the fibers light fluxes, corrected for the position dependent optical attenuation and scintillation efficiency. RESULTS Considering a treatment couch positioning error of ±0.5 mm, the system was able to measure the field position with a mean error of 0.1 mm perpendicular and 0.8 mm parallel to the scintillating fiber array. The maximum error measured using this setup was of 0.13 mm perpendicular and 3.2 mm parallel to the scintillating fiber array. The energetic fluence was determined with a mean error of 0.5% and a maximum error of 2.2%. CONCLUSIONS This work demonstrates the capacity of a long scintillating fibers array to detect in real-time both the position and the energetic fluence of an incident small radiation field. Such methodology would allow for the real-time tracking of small field in both photon and particle radiation therapy.
منابع مشابه
CHARGED PARTICLE TRACKING AND VERTEX DETECTION GROUP SUMMAFtY REPORT’
S-=-Y Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tradting Group studied radiation damage and rate limitationa to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10j3 cmm2 see-‘; however, ...
متن کاملA quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates
Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...
متن کاملMeasurement of Entrance Surface Dose on an Anthropomorphic Thorax Phantom Using a Miniature Fiber-Optic Dosimeter
A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, ...
متن کاملRadiation hardness and mechanical durability of Kuraray optical fibers
The radiation hardness of Kuraray 3HF scintillating and clear optical fibers has been investigated using 60Co c-rays in the dose range 0.4—500krad. Significant initial degradation in the attenuation length was observed both for 3HF and clear fibers at a dose as small as 10 krad. The radiation hardness of both the scintillating and clear fibers is identical if it is expressed in terms of the rat...
متن کاملA study on the accuracy of motion tracking of thoracic tumors at radiotherapy with external surrogates
Introduction: In radiotherapy with external surrogates, exact information of tumor position is one of the key factors that improves treatment delivery. Many dynamic tumors in thorax region of patient move mainly due to respiration and are known as intra-fractional motion error that must be compensated, as well. One of clinical strategy is using Stereotactic Body Radiation Thera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 6Part28 شماره
صفحات -
تاریخ انتشار 2012